CLOUD COMPUTING

The Bioingine.com :- On-boarding PICO – Evidence Based Medicine [Large Data Driven Medicine]

 

Screen Shot 2016-09-06 at 9.51.22 AM

The BioIngine.com Platform Beta launch on the anvil with below discussed EBM examples for all to Explore !!!

The Bioingine.com Platform is built on Wolfram Enterprise Private Cloud

  • using the technology from one of the leading science and tech companies
  • using Wolfram Technology, the same technology that is at every Fortune 500 company
  • using Wolfram Technology, the same technology that is at every major educational facility in the world
  • leveraging the same technology as Wolfram|Alpha, the brains behind Apple’s Siri

Medical Automated Reasoning Programming Language environment [MARPLE]

References:- On PICO Gold Standard 

Formulating a researchable question: A critical step for facilitating good clinical research

Sadaf Aslam and Patricia Emmanuel

Abstract:- Developing a researchable question is one of the challenging tasks a researcher encounters when initiating a project. Both, unanswered issues in current clinical practice or when experiences dictate alternative therapies may provoke an investigator to formulate a clinical research question. This article will assist researchers by providing step-by-step guidance on the formulation of a research question. This paper also describes PICO (population, intervention, control, and outcomes) criteria in framing a research question. Finally, we also assess the characteristics of a research question in the context of initiating a research project.

Keywords: Clinical research project, PICO format, research question

MARPLE – Question Format Medical Exam / PICO Setting

A good way to use Marple/HDNsudent is to set it up like an exam then the student answers. Marple then answers with its choices, i.e. candidate answers ranked by probability proposing its own choice of answer as the most probable and explaining why it did that (by the knowledge elements successfully used). This can then be compared with the intended answer of the examiner of which, of course Marple’s probability assessment of it can be seen.

It is already the case that MARPLE is used to test exam questions and it is scary that questions that have been issued by a Medical Licensing Board can turn out to be assigned an incorrect or unreachable answer by the examiner. The reason on inspection is that the question was ambiguous and potentially misleading, even though that may have not been obvious, or simply out of date – progress in science changed the answer and it shows up fast on some new web page (Translational Research for Medicine in action!). Often it is wrong or misleading because there turns out to be a very strong alternative answer.

Formulating the Questions in PICO Format  

The modern approach to formulation is the recommendation for medical best practice known as PICO.

  • P is the patient, population or problem (Primarily, what is the disease/diagnosis Dx?)
  • I is intervention or something happening that intervenes (What is the proposed therapy Rx (drug, surgery, or life style recommendation)
  • C is some alternative to that intervention or something happening that can be compared (with what options (including no treatment)? May also include this in the context of different compared types of patient female, diabetic, elderly, or Hispanic etc.
  • O is the outcome, i.e. a disease state or set of such that occurs, or fails to occur, or is ideally terminated by the intervention such that health is restored. (Possibly that often means the prognosis, but often prognosis implies a more complex scenario on a longer timescale further in the future).

Put briefly “For P does I as opposed to C have outcome O” is the PICO form.

The above kinds of probabilities are not necessarily the same as an essentially statistical analysis by structured data mining would deliver. All of these except C relate to associations, symptoms, Dx, Rx, outcome.  It is C that is difficult. Probably the best interpretation is replacing Rx in associations with no Rx and then various other Rx. If C means say in other kinds of patients, then it is a matter of associations including those.

A second step of quantification is usually required in which probabilities are obtained as measures of scope based on counting. Of particular interest here is the odds ratio

Two Primary Methods of Asking a Question in The BioIngine  

1. Primarily Symbolic and Qualitative. (more unstructured data dependent) [Release 1]

HDN is behind the scenes but focuses mainly on contextual probabilities between statements. HDNstudent is used to address the issue as a multiple choice exam with indefinitely large numbers of candidate answers, in which the expert end-user can formulate PICO questions and candidate answers, or all these can be derived automatically or semi-automatically. Each initial question can be split into a P, I, C, and O question.

2. Primarily Calculative and Quantitative. (more structured – EHR data dependent) [Release 2]

Focus on intrinsic probabilities, the degree of truth associated with each statement by itself. DiracBuilder used after DiracMiner addresses EBM decision measures as special cases of HDN inference. Of particular interest is an entry

<O |  P, I > / <O   |  P, C>

which is the HDN likelihood or HDN relative risk of the outcome O given patient/population/problem P given I as opposed to C, usually seen as a “NOT I”, and

<NOT O  |  P, I> / <NOT O | P, C>

which is the HDN likelihood or HDN relative risk of NOT getting the outcome O given patient/population/problem P given I as opposed to C usually seen as a “NOT I”. Note though that you get a two for one, because we also have <P, I |  O>, the adjoint form, at the same time, because on the complex conjugate of the other. Note that the ODDS RATIO is the former likelihood ratio over the latter, and hence the HDN odds ratio as it would normally be entered in DiracBuilder is as follows:-

<O | P, I>

/<NOT O | P, C>

<NOT O | P, C>

/<NOT O | P, I>

  • QUALITATIVE / SYMBOLIC

An 84-year-old man in a nursing home has increasing poorly localized lower abdominal pain recurring every 3-4 hours over the past 3 days. He has no nausea or vomiting; the last bowel movement was not recorded. Examination shows a soft abdomen with a palpable, slightly tender, lower left abdominal mass. Hematocrit is 28%. Leukocyte count is 10,000/mm3. Serum amylase activity is within normal limits. Test of the stool for occult blood is positive. What is the diagnosis?

•This is usually addressed by a declared list of multiple choice candidate answers, though the list can be indefinitely large. 30 is not unusual.

•The answers are all assigned probabilities, and the most probable is considered the answer, at least for testing purposes in a medical licensing exam context. These probabilities can make use of probabilities, but predominantly they are contextual probabilities, depending in the relationships between chains and networks of knowledge elements that link the question to each answer.

  • QUANTITATIVE / CALCULATIVE: 

Will my female patient age 50-59 taking diabetes medication and having a body mass index of 30-39 have very high cholesterol if the systolic BP is 130-139 mmHg and HDL is 50-59 mg/dL and non-HDL is 120-129 mg/dL?”.

•This forms a preliminary  Hyperbolic Dirac Net (inference net) from the query, which may be refined and to each statement intrinsic probabilities are assigned, e.g. automatically by data mining.

•This question could properly start “What is the probability that…” . The real answers of interest here are not qualitative statements, but the final probabilities.

•Note the “IF”. But POPPER extends this to relationships beyond IF associative or conditional ones, e.g. verbs of action.

Quantitative Computations :- Odds Ratio and Risk Computations

  • Medical Necessity
  • Laboratory Testing Principles
  • Quality of Diagnosis
  • Diagnosis Test Accuracy
  • Diagnosis Test
    • Sensitivity
    • Specificity
    • Predictive Values – Employing Bayes Theorem (Positive and Negative Value)
  • Coefficient of Variations
  • Resolving Power
  • Prevalence and Incidence
  • Prevalence and Rate
  • Relative Risk and Cohort Studies
  • Predictive Odds
  • Attributable Risk
  • Odds Ratio

Examples Quantitative / Calculative HDN Queries

In The Bioingine.com Release 1 – we are only dealing with Quantitative / Calculative type questions

Examples discussed in section A below are simple to play with to appreciate the HDN power for conducting inference. However, Problems B2 onwards requires some deeper understanding of the Bayesian and HDN analysis.

<‘Taking BP medication’:=’1’ |  ‘Taking diabetes medication’:= ‘1’>

/<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘0’>

A.   Against Data Set 1.csv (2114 records with 33 variables created for Cardiovascular Risk Studies (Framingham Risk Factor)

B.   Against Data Set2.csv (nearing 700,000 records with 196 variables. Truly a large data set with high dimensionality (many columns of clinical and demographic factors), leading to a combinatorial explosion.

Note: in the examples below, you are forming questions or HDN queries such as

For African Caribbean patients 50-59 years old with a BMI of 50-59 what is the Relative Risk of needing to be on BP medication if there is a family history as opposed to no family history?

IMPORTANT: THE TWO-FOR-ONE EFFECT OF THE DUAL. Calculations report a dual value for any probabilistic value implied for the expression ented. In some cases you may be only interest in the first number in the dual, but the second number is always meaningful and frequently very useful. Notably, we say Relative Risk by itself for brevity, but in fact this is only the first number in the dual that is reported. In general, the form

<’A’:=’1’|’B’:=’1’>

/<’A’:=’1’|’B’:=’0’>

yields the following  dual probabilistic value…

(P(’A’:=’1’|’B’:=’1’)/ P(’A’:=’1’|’B’:=’0’),   ( P(’B’:=’1’|’A’:=’1’)/ P(’B’:=0’|’B’:=’1’),

where the first ratio is relative risk RR(P(’A’:=’1’|’B’:=’1’) and the second ratio is predictive odds RR(P(’A’:=’1’|’B’:=’1’).

a.   This inquiry seeking the risk of BP requires being translated into Q-UEL specification as shown below. [All the below Q-UEL queries in red can be copied and entered in the HDN query to get the HDN inference for the pertinent Data Sets.]

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1 ‘ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’0’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

b.    The Q-UEL specified query enables Notational Algebra to work while making inference from the giant semantic lake or the knowledge repository store (KRS).

c.    Recall, KRS is the representation of the universe as a Hyperbolic Dirac Net. This was created by transformation process of the uploaded data set to activate the automated statistical studies.

d.    The query works against the KRS and extracts the inference in HDN format displaying an inverse Bayesian Result; which calculates both classical and zeta probabilities :- Pfwd, Pzfwd & Pbwd, Pzbwd

A1. Relative Risk – High BP Case

Example: – Study of BP = blood pressure (high) in the population data set considered.

This case is very similar, because high BP and diabetes are each comorbidities with high BMI and hence to some extent with each other. Consequently we just substitute diabetes by BP throughout.

Note: for the values enter discreet or continuous

(0) We can in fact test the strength of the above with the following RR, which in effect reads as “What is the relative risk of needing to take BP medication if you are diabetic as opposed to not diabetic?

<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘1’>

/<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘0’>

The following predictive odds PO make sense and are useful here:-

<‘Taking BP medication’:=’1’ | ‘BMI’:= ’50-59’ >

/<‘Taking BP medication’:=’0’ | ‘BMI’:= ’50-59’ >

and (separately entered)

<‘Taking diabetes medication’:=’1’ | ‘BMI’:= ’50-59’ >

/<‘Taking diabetes medication’:=’0’ | ‘BMI’:= ’50-59’ >

And the odds ratio OR would be a good measure here (as it works in both directions). Note Pfwd = Pbw theoretically for an odds ratio.

<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘1’>

<‘Taking BP medication’:=’0’ | ‘Taking diabetes medication’:= ‘0’>

/<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘0’>

/<‘Taking BP medication’:=’0’ | ‘Taking diabetes medication’:= ‘1’>

(1)          For African Caribbean patients 50-59 years old with a BMI of 50-59 what is the Relative Risk of needing to be on BP medication if there is a family history as opposed to no family history?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1‘ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’0’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

(2)          For African Caribbean patients 50-59 years old with a family history of BP what is the Relative Risk of needing to be on BP medication if there is a BMI of 50-59 as opposed to a reasonable BMI of ’20-29’?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’20-29’ >

(3)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 40-49?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’40-49’ and ‘BMI’:= ’50-59’>

(4)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 40-49?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(5)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 40-49?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1‘ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(6)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 30-39?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’30-39and ‘BMI’:= ’40-49’>

(7)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 20-29?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’20-29 and ‘BMI’:= ’40-49’>

(8)          For patients with a family history of BP age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on BP medication if they are African Caribbean rather than Caucasian?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘Caucasian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(9)          For patients with a family history of BP age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on BP medication if they are African Caribbean rather than Asian?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’’1 and ‘Ethnicity’:=‘Asian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(10)       For patients with a family history of BP age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on BP medication if they are African Caribbean rather than Hispanic

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and  ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘Hispanic’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

A2. Relative Risk – Diabetes Case

Against Data Set1.csv

Type 2 diabetes is implied here.

(11)       For African Caribbean patients 50-59 years old with a BMI of 50-59 what is the Relative Risk of needing to be on diabetes medication if there is a family history as opposed to no family history?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’0’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

(12)       For African Caribbean patients 50-59 years old with a family history of diabetes what is the Relative Risk of needing to be on diabetes medication if there is a BMI of 50-59 as opposed to a reasonable BMI of ’20-29’?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’20-29’ >

(13)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 40-49?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’40-49’ and ‘BMI’:= ’50-59’>

(14)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 40-49?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(15)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 40-49?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and  ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(16)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 30-39?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’30-39and ‘BMI’:= ’40-49’>

(17)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 20-29?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’20-29and ‘BMI’:= ’40-49’>

A3. Relative Risk – Cholesterol Case

Against Data Set1.csv

(18)       For African Caribbean patients 50-59 years old with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is a family history as opposed to no family history?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

(19)       For African Caribbean patients 50-59 years old with a fat% of 40-49, with a family history of cholesterol, what is the Relative Risk of needing to be on cholesterol medication if there is a BMI of 50-59 as opposed to a reasonable BMI of ’20-29’?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’20-29’ >

(20)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 40-49?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’40-49’ and ‘BMI’:= ’50-59’>

(21)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 40-49?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and  ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(22)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 40-49?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(23)       For African Caribbean patients with a family history of cholesterol , with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 30-39?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’30-39and ‘BMI’:= ’40-49’>

(24)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 20-29?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’20-29and ‘BMI’:= ’40-49’>

(25)       For patients with a family history of cholesterol age 50-59 and BMI of 50-59, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if they are African Caribbean rather than Caucasian?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=1‘’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘Caucasian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(26)       For patients with a family history of cholesterol age 50-59 and BMI of 50-59, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if they are African Caribbean rather than Asian?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘Asian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(27)       For patients with a family history of cholesterol age 50-59 and BMI of 50-59, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if they are African Caribbean rather than Hispanic

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘Hispanic’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(28)       For ‘African Caribbean’ patients with a family history of cholesterol age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on cholesterol medication if they have fat% 40-49 rather than 30-39?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:= ‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:= ‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘Caucasian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’>

(29)       For patients with a family history of diabetes age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on diabetes medication if they are African Caribbean rather than Asian?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and  ‘Ethnicity’:=‘Asian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’>

(30)       For patients with a family history of diabetes age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on diabetes medication if they are African Caribbean rather than Hispanic

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘Hispanic’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-5’9>

(31)       For patients with a family history of diabetesage 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on diabetes medication if they are African Caribbean rather than Caucasian?

Advertisements

The BioIngine.com Platform Beta Release 1.0 on the Anvil

The BioIngine.com™ 

Ingine; Inc™, The BioIngine.com™, DiracIngine™, MARPLE™ are all Ingine Inc © and Trademark Protected; also The BioIngine.com is Patent Pending IP belonging to Ingine; Inc™.

Screen Shot 2016-09-01 at 8.32.18 PM

High Performance Cloud based Cognitive Computing Platform

The below figure depicts the healthcare analytics challenge as the order of complexity is scaled.

1. Introduction Beta Release 1.0

It is our pleasure to introduce startup venture Ingine; Inc that brings to market The BioIngine.com™Cognitive Computing Platform for the Healthcare market, delivering Medical Automated Reasoning Programming Language Environment (MARPLE) capability based on the mathematics borrowed from several disciplines and notably from late Prof Paul A M Dirac’s Quantum Mechanics.

The BioIngine.com™; is a High Performance Cloud Computing Platformdelivering HealthCare Large-Data Analytics capability derived from an ensemble of bio-statistical computations. The automated bio-statistical reasoning is a combination of “deterministic” and “probabilistic” methods employed against both structured and unstructured large data sets leading into Cognitive Reasoning.

The BioIngine.com™; delivers Medical Automated Reasoning based on a Medical Automated Programming Language Environment (MARPLE) capability, so better achieving 2nd order semantic interoperability1 in the Healthcare ecosystem. (Appendix Notes)

The BioIngine.com™ is a result of several years of efforts with Dr. Barry Robson; former Chief Scientific Officer, IBM Global Healthcare, Pharmaceutical and Life Science. His research has been in developing quantum math driven exchange and inference language achieving semantic interoperability, while also enabling Clinical Decision Support System, that is inherently Evidence Based Medicine (EBM). The solution, besides enabling EBM, also delivers knowledge graphs for Public Health surveys including those sought by epidemiologists. Based on Dr Robson’s experience in the biopharmaceutical industry and pioneering efforts in bioinformatics, this has the data mining driven potential to advance pathways planning from clinical to pharmacogenomics.

The BioIngine.com™; brings the machinery of Quantum Mechanics to Healthcare analytics; delivering a comprehensive data science experience that covers both Patient Health and Population Health (Epidemiology) analytics, driven by a range of bio-statistical methods from descriptive to inferential statistics, leading into evidence driven medical reasoning.

The BioIngine.com™; transforms the large clinical data sets generated by interoperability architectures, such as in Health Information Exchange (HIE) into “semantic lake” representing the Health ecosystem that is more amenable to bio-statistical reasoning and knowledge representation. This capability delivers evidence-based knowledge needed for Clinical Decision Support System, better achieving Clinical Efficacy by helping to reduce medical errors.

The BioIngine.com™; platform working against large clinical data sets or while residing within the large Patient Health Information Exchange (HIE) works in creating opportunity for Clinical Efficacy, while it also facilitates in the better achievement of “Efficiencies in the Healthcare Management” that Accountable Care Organization (ACO) seeks.

Our endeavors have resulted in the development of revolutionary Data Science to deliver Health Knowledge by Probabilistic Inference. The solution developed addresses critical areas in both scientific and technical, notably the healthcare interoperability challenges of delivering semantically relevant knowledge both at patient health (clinical) and public health level (Accountable Care Organization).

2. WhyThe BioIngine.com™?

The basic premise in engineering The BioIngine.com™ is in acknowledging the fact that in solving knowledge extraction from the large data sets (both structured and unstructured), one is confronted by very large data sets riddled by high-dimensionality and uncertainty.

Generally in solving insights from the large data sets the order in complexity is scaled as follows:-

A. Insights around :- “what” 

For large data sets, descriptive statistics are adequate to extract a “what” perspective. Descriptive statistics generally delivers statistical summary of the ecosystem and the probabilistic distribution.

B. Univariate Problem :- “what” 

Considering some simplicity in the variables relationships or is cumulative effects between the independent variables (causing) and the dependent variables (outcomes):-

a) Univariate regression (simple independent variables to dependent variables analysis)

b) Correlation Cluster – shows impact of set of variables or segment analysis.

           https://en.wikipedia.org/wiki/Correlation_clustering

[From above link:- In machine learningcorrelation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects. For example, given a weighted graph G = (V,E), where the edge weight indicates whether two nodes are similar (positive edge weight) or different (negative edge weight), the task is to find a clustering that either maximizes agreements (sum of positive edge weights within a cluster plus the absolute value of the sum of negative edge weights between clusters) or minimizes disagreements (absolute value of the sum of negative edge weights within a cluster plus the sum of positive edge weights across clusters). Unlike other clustering algorithms this does not require choosing the number of clusters k in advance because the objective, to minimize the sum of weights of the cut edges, is independent of the number of clusters.]

C. Multivariate Analysis (Complexity increases) :- “what”

a) Multiple regression (considering multiple univariate to analyze the effect of the independent variables on the outcomes)

b) Multivariate regression – where multiple causes and multiple outcomes exists

All the above are still discussing the “what” aspect. When the complexity increases the notion of independent and dependent variables become non-deterministic, since it is difficult to establish given the interactions, potentially including cyclic paths of influence in a network of interactions, amongst the variables. A very simple example in just a simple case is that obesity causes diabetes, but the also converse is true, and we may also suspect that obesity causes type 2 diabetes cause obesity… In such situation what is best as “subject” and what is best as “object” becomes difficult to establish. Existing inference network methods typically assume that the world can be represented by a Directional Acyclic Graph, more like a tree, but the real world is more complex than that that: metabolism, neural pathways, road maps, subway maps, concept maps, are not unidirectional, and they are more interactive, with cyclic routes. Furthermore, discovering the “how” aspect becomes important in the diagnosis of the episodes and to establish correct pathways, while also extracting the severe cases (chronic cases which is a multivariate problem). Indeterminism also creates an ontology that can be probabilistic, not crisp.

Most ACO analytics addresses the above based on the PQRS clinical factors, which are all quantitative. Barely useful for advancing the ACO into solving performance driven or value driven outcomes most of which are qualitative.

D. Neural Net :- “what”

https://www.wolfram.com/language/11/neural-networks/?product=mathematica

The above discussed challenges of analyzing multivariate pushes us into techniques such as Neural Net; which is the next level to Multivariate Regression Statistical Approach…. where multiple regression models are feeding into the next level of clusters, again an array of multiple regression models.

The Neural Net method still remains inadequate in exposing “how” probably the human mind is organized in discerning the health ecosystem for diagnostic purposes, for which “how”, “why”, “when” etc becomes imperative to arrive at accurate diagnosis and target outcomes efficiently. Its learning is “smudged out”. A little more precisely put: it is hard to interrogate a Neural Net because it is far from easy to see what are the weights mixed up in different pooled contributions, or where they come from.

“So we enter Probabilistic Computations which is as such Combinatorial Explosion Problem”.

E. Hyperbolic Dirac Net (Inverse or Dual Bayesian technique): – “how”, “why”, “when” in addition to “what”.

Note:- Beta Release 1.0 only addresses HDN transformation and inference query against the structured data sets and Features A, B and E. However, as a non-packaged solution C and D features can still be explored.

Release 2.0 will deliver full A.I driven reasoning capability MARPLE working against both structured and unstructured data sets. Furthermore, it will be designed to be customized for EBM driven “Point Of Care” and “Care Planning” productized user experience.

The BioIngine.com™offers a comprehensive bio-statistical reasoning experience in the application of the data science as discussed above that blends descriptive and inferential statistical studies.

The BioIngine.com™; is a High Performance Cloud Computing Platformdelivering HealthCare Large-Data Analytics capability derived from an ensemble of bio-statistical computations. The automated bio-statistical reasoning is a combination of “deterministic” and “probabilistic” methods employed against both structured and unstructured large data sets leading into Cognitive Reasoning.

Given the challenge of analyzing against the large data sets both structured (EHR data) and unstructured data; the emerging Healthcare analytics are around above discussed methods D and E; Ingine Inc is unique in the Hyperbolic Dirac Net proposition.

Q-UEL Toolkit for Medical Decision Making :- Science of Uncertainty and Probabilities

Screen Shot 2016-08-24 at 11.07.49 AM

Quantum Universal Exchange Language

Emergent | Interoperability | Knowledge Mining | Blockchain

Q-UEL

  1. It is a toolkit / framework
  2. Is an Algorithmic Language for constructing Complex System
  3. Results into a Inferential Statistical mechanism suitable for a highly complex system – “Hyperbolic Dirac Net”
  4. Involves an approach that is based on the premise that a Highly Complex System driven by the human social structures continuously strives to achieve a higher order in the entropic journey by continuos discerning the knowledge hidden in the system that is in continuum.
  5. A System in Continuum seeking Higher and Higher Order is a Generative System.
  6. A Generative System; Brings System itself as a Method to achieve Transformation. Similar is the case for National Learning Health System.
  7. A Generative System; as such is based on Distributed Autonomous Agents / Organization; achieving Syndication driven by Self Regulation or Swarming behavior.
  8. Essentially Q-UEL as a toolkit / framework algorithmically addresses interoperability, knowledge mining and blockchain; while driving the Healthcare Eco-system into Generative Transformation achieving higher nd higher orders in the National Learning Health System.
  9. It has capabilities to facilitate medical workflow, continuity of care, medical knowledge extraction and representation from vast large sets of structured and unstructured data, automating bio-statistical reasoning leading into large data driven evidence based medicine, that further leads into clinical decision support system including knowledge management and Artificial Intelligence; and public health and epidemiological analysis.

http://www.himss.org/achieving-national-learning-health-system

GENERATIVE SYSTEM :-

https://ingine.wordpress.com/2013/01/09/generative-transformation-system-is-the-method/

A Large Chaotic System driven by Human Social Structures has two contending ways.

a. Natural Selection – Adaptive – Darwinian – Natural Selection – Survival Of Fittest – Dominance

b. Self Regulation – Generative – Innovation – Diversity – Cambrian Explosion – Unique Peculiarities – Co Existence – Emergent

Accountable Care Organization (ACO) driven by Affordability Care Act transforms the present Healthcare System that is adaptive (competitive) into generative (collaborative / co-ordinated) to achieve inclusive success and partake in the savings achieved. This is a generative systemic response contrasting the functional and competitive response of an adaptive system.

Natural selection seems to have resulted in functional transformation, where adaptive is the mode; does not account for diversity.

Self Regulation – seems like is a systemic outcome due to integrative influence (ecosystem), responding to the system constraints. Accounts for rich diversity.

The observer learns generatively from the system constraints for the type of reflexive response required (Refer – Generative Grammar – Immune System – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554270/pdf/emboj00269-0006.pdf)

From the above observation, should the theory in self regulation seem more correct and that adheres to laws of nature, in which generative learning occurs. Then, the assertion is “method” is offered by the system itself. System’s ontology has an implicate knowledge of the processes required for transformation (David Bohm – Implicate Order)

For very large complex system,

System itself is the method – impetus is the “constraint”.

In the video below, the ability for the cells to creatively create the script is discussed which makes the case for self regulated and generative complex system in addition to complex adaptive system.

 

Further Notes on Q-UEL / HDN :-

  1. That brings Quantum Mechanics (QM) machinery to Medical Science.
  2. Is derived from Dirac Notation that helped in defining the framework for describing the QM. The resulting framework or language is Q-UEL and it delivers a mechanism for inferential statistics – “Hyperbolic Dirac Net”
  3. Created from System Dynamics and Systems Thinking Perspective.
  4. It is Systemic in approach; where System is itself the Method.
  5. Engages probabilistic ontology and semantics.
  6. Creates a mathematical framework to advance Inferential Statistics to study highly chaotic complex system.
  7. Is an algorithmic approach that creates Semantic Architecture of the problem or phenomena under study.
  8. The algorithmic approach is a blend of linguistics semantics, artificial intelligence and systems theory.
  9. The algorithm creates the Semantic Architecture defined by Probabilistic Ontology :- representing the Ecosystem Knowledge distribution based on Graph Theory

To make a decision in any domain, first of all the knowledge compendium of the domain or the system knowledge is imperative.

System Riddled with Complexity is generally a Multivariate System, as such creating much uncertainty

A highly complex system being non-deterministic, requires probabilistic approaches to discern, study and model the system.

General Characteristics of Complex System Methods

  • Descriptive statistics are employed to study “WHAT” aspects of the System
  • Inferential Statistics are applied to study “HOW”, “WHEN”, “WHY” and “WHERE” probing both spatial and temporal aspects.
  • In a highly complex system; the causality becomes indeterminable; meaning the correlation or relationships between the independent and dependent variables are not obviously established. Also, they seem to interchange the position. This creates dilemma between :- subject vs object, causes vs outcomes.
  • Approaching a highly complex system, since the priori and posterior are not definable; inferential techniques where hypothesis are fixed before the beginning the study of the system become enviable technique.

Review of Inferential Techniques as the Complexity is Scaled

Step 1:- Simple System (turbulence level:-1)

Frequentist :- simplest classical or traditional statistics; employed treating data random with a steady state hypothesis – system is considered not uncertain (simple system). In Frequentist notions of statistics, probability is dealt as classical measures based only on the idea of counting and proportion. This technique is applied to probability to data, where the data sets are rather small.

Increase complexity: Larger data sets, multivariate, hypothesis model is not established, large variety of variables; each can combine (conditional and joint) in many different ways to produce the effect.

Step 2:- Complex System (turbulence level:-2)

Bayesian :- hypothesis is considered probabilistic, while data is held at steady state. In Bayesian notions of statistics, probability is of the hypothesis for a given sets of data that is fixed. That is, hypothesis is random and data is fixed. The knowledge extracted contains the more subjectivist notions of uncertainty, belief, reliability, or confidence often used in automated inference and decision support systems.

Additionally the hypothesis can be explored only in an acyclic fashion creating Directed Acyclic Graphs (DAG)

Increase the throttle on the complexity: Very large data sets, both structured and unstructured,  Hypothesis random, multiple Hypothesis possible, Anomalies can exist, There are hidden conditions, need arises to discover the “probabilistic ontology” as they represent the system and the behavior within.

Step 3: Highly Chaotic Complex System (turbulence level:-3)

Certainly DAG is now inadequate, since we need to check probabilities as correlations and also causations of the variables, and if they conform to a hypothesis producing pattern, meaning some ontology is discovered which describes the peculiar intrinsic behavior among a specific combinations of the variables to represent a hypothesis condition. And, there are many such possibilities within the system, hence  very chaotic and complex system.

Now the System itself seems probabilistic; regardless of the hypothesis and the data. This demands Multi-Lateral Cognitive approach

Telandic …. “Point – equilibrium – steady state – periodic (oscillatory) – quasiperiodic – Chaotic – and telandic (goal seeking behavior) are examples of behavior here placed in order of increasing complexity”

A Highly Complex System, demands a Dragon Slayer – Hyperbolic Dirac Net (HDN) driven Statistics (BI-directional Bayesian) for extracting the Knowledge from a Chaotic Uncertain System.

Bioingine :- Multivariate Cognitive Computing Platform – Distributed Concurrent Computing by Dockerized Microservices

HDN_Cognitive_Computing

Employ of Dockerized Apps Opens a Vistas of Possibilities with Hadoop Architecture. Where, the Hadoop’s traditional data management architecture is extended beyond data processing and management into Distributed Concurrent Computing.

 

Data Management (Storage, Security,  MapReduce based Pre-processing) and Data Science (Algorithms) Decoupled.

Microservices driven Concurrent Computing :- Complex Distributed Architecture made Affordable

Conceptual View of Yarn driven Dockerized Session Management of  Multiple Hypothesis over Semantic Lake

Notes on HDN (Advanced Bayesian), Clinical Semantic Data Lake and Deep Learning / Knowledge Mining and Inference 

 

 

Evidence based Medicine driven by Inferential Statistics – Hyperbolic Dirac Net

Slide1

http://sociology.about.com/od/Statistics/a/Introduction-To-Statistics.htm

From above link

Descriptive Statistics (A quantitative summary)

Descriptive statistics includes statistical procedures that we use to describe the population we are studying. The data could be collected from either a sample or a population, but the results help us organize and describe data. Descriptive statistics can only be used to describe the group that is being studying. That is, the results cannot be generalized to any larger group.

Descriptive statistics are useful and serviceable if you do not need to extend your results to any larger group. However, much of social sciences tend to include studies that give us “universal” truths about segments of the population, such as all parents, all women, all victims, etc.

Frequency distributionsmeasures of central tendency (meanmedian, and mode), and graphs like pie charts and bar charts that describe the data are all examples of descriptive statistics.

Inferential Statistics

Inferential statistics is concerned with making predictions or inferences about a population from observations and analyses of a sample. That is, we can take the results of an analysis using a sample and can generalize it to the larger population that the sample represents. In order to do this, however, it is imperative that the sample is representative of the group to which it is being generalized.

To address this issue of generalization, we have tests of significance. A Chi-square or T-test, for example, can tell us the probability that the results of our analysis on the sample are representative of the population that the sample represents. In other words, these tests of significance tell us the probability that the results of the analysis could have occurred by chance when there is no relationship at all between the variables we studied in the population we studied.

Examples of inferential statistics include linear regression analyseslogistic regression analysesANOVAcorrelation analysesstructural equation modeling, and survival analysis, to name a few.

Inferential Statistics:- Bayes Net  [Good for simple Hypothesis]

“Suppose that there are two events which could cause grass to be wet: either the sprinkler is on or it’s raining. Also, suppose that the rain has a direct effect on the use of the sprinkler (namely that when it rains, the sprinkler is usually not turned on)… The joint probability function is: P(G, S, R) = P(G|S, R)P(S|R) P(R)”. The example illustrates features common to homeostasis of biomedical importance, but is of interest here because, unusual in many real world applications of BNs, the above expansion is exact, not an estimate of P(G, S, R).

Inferential Statistics: Hyperbolic Dirac Net (HDN) – System contains innumerable Hypothesis

HDN Estimate (forward and backwards propagation)

P(A=’rain’) = 0.2 # <A=’rain’ | ?>

P(B=’sprinkler’) = 0.32 # <B=’sprinkler’ | ?>

P(C=’wet grass’) =0.53 # <? | C=’wet grass>

Pxx(not A) = 0.8

Pxx(not B) = 0.68

Pxx(not C) = 0.47

# <B=’sprinkler’ | A=’rain’>

P(A, B) = 0.002

Px(A) = 0.2

Px(B) = 0.32

Pxx(A, not B) = 0.198

Pxx(not A, B) = 0.32

Pxx(not A, not B) = 0.48

#<C=’wet grass’|A=’rain’,B=’sprinkler’>

P(A,B,C) = 0.00198

Px(A, B) = 0.002

Px(C=’wet grass’) =0.53

Pxx(A,B,not C) = 0.00002

End

Since the focus in this example is on generating a coherent joint probability, Pif and Pif* are not included in this case, and we obtain {0.00198, 0.00198} = 0.00198. We could us them to dualize the above to give conditional probabilities. Being an exact estimate, it allows us to demonstrate that the total stress after enforced marginal summation (departure from initial specified probabilities) is very small, summing to 0.0005755. More typically, though, a set of input probabilities can be massaged fairly drastically. Using the notation initial -> final, the following transitions occurred after a set of “bad initial assignments”.

P (not A) = P[2][0][0][0][0][0][0][0][0][0] = 0.100 -> 0.100000

P (C) = P[0][0][1][0][0][0][0][0][0][0] = 0.200 -> 0.199805

P ( F,C) = P[0][0][1][0][0][1][0][0][0][0] = 0.700 -> 0.133141

P (C,not B,A) = P[1][2][1][0][0][0][0][0][0][0] = 0.200 -> 0.008345

P (C,I,J,E,not A) = P[2][1][0][1][0][0][0][1][1][0] = 0.020 -> 0.003627

P (B,F,not C,D) = P[0][1][2][1][0][1][0][0][0][0] = 0.300 -> 0.004076

P (C) = P[0][0][1][0][0][0][0][0][0][0] = 0.200 -> 0.199805

P ( F,C) = P[0][0][1][0][0][1][0][0][0][0] = 0.700 -> 0.133141

P (C,not B,A) = P[1][2][1][0][0][0][0][0][0][0] = 0.200 -> 0.008345

P (C,I,J,E,not A) = P[2][1][0][1][0][0][0][1][1][0] = 0.020 -> 0.003627

P (B,F,not C,D) = P[0][1][2][1][0][1][0][0][0][0] = 0.300 -> 0.004076