Dr. Barry Robson

The Bioingine.com :- On-boarding PICO – Evidence Based Medicine [Large Data Driven Medicine]

 

Screen Shot 2016-09-06 at 9.51.22 AM

The BioIngine.com Platform Beta launch on the anvil with below discussed EBM examples for all to Explore !!!

The Bioingine.com Platform is built on Wolfram Enterprise Private Cloud

  • using the technology from one of the leading science and tech companies
  • using Wolfram Technology, the same technology that is at every Fortune 500 company
  • using Wolfram Technology, the same technology that is at every major educational facility in the world
  • leveraging the same technology as Wolfram|Alpha, the brains behind Apple’s Siri

Medical Automated Reasoning Programming Language environment [MARPLE]

References:- On PICO Gold Standard 

Formulating a researchable question: A critical step for facilitating good clinical research

Sadaf Aslam and Patricia Emmanuel

Abstract:- Developing a researchable question is one of the challenging tasks a researcher encounters when initiating a project. Both, unanswered issues in current clinical practice or when experiences dictate alternative therapies may provoke an investigator to formulate a clinical research question. This article will assist researchers by providing step-by-step guidance on the formulation of a research question. This paper also describes PICO (population, intervention, control, and outcomes) criteria in framing a research question. Finally, we also assess the characteristics of a research question in the context of initiating a research project.

Keywords: Clinical research project, PICO format, research question

MARPLE – Question Format Medical Exam / PICO Setting

A good way to use Marple/HDNsudent is to set it up like an exam then the student answers. Marple then answers with its choices, i.e. candidate answers ranked by probability proposing its own choice of answer as the most probable and explaining why it did that (by the knowledge elements successfully used). This can then be compared with the intended answer of the examiner of which, of course Marple’s probability assessment of it can be seen.

It is already the case that MARPLE is used to test exam questions and it is scary that questions that have been issued by a Medical Licensing Board can turn out to be assigned an incorrect or unreachable answer by the examiner. The reason on inspection is that the question was ambiguous and potentially misleading, even though that may have not been obvious, or simply out of date – progress in science changed the answer and it shows up fast on some new web page (Translational Research for Medicine in action!). Often it is wrong or misleading because there turns out to be a very strong alternative answer.

Formulating the Questions in PICO Format  

The modern approach to formulation is the recommendation for medical best practice known as PICO.

  • P is the patient, population or problem (Primarily, what is the disease/diagnosis Dx?)
  • I is intervention or something happening that intervenes (What is the proposed therapy Rx (drug, surgery, or life style recommendation)
  • C is some alternative to that intervention or something happening that can be compared (with what options (including no treatment)? May also include this in the context of different compared types of patient female, diabetic, elderly, or Hispanic etc.
  • O is the outcome, i.e. a disease state or set of such that occurs, or fails to occur, or is ideally terminated by the intervention such that health is restored. (Possibly that often means the prognosis, but often prognosis implies a more complex scenario on a longer timescale further in the future).

Put briefly “For P does I as opposed to C have outcome O” is the PICO form.

The above kinds of probabilities are not necessarily the same as an essentially statistical analysis by structured data mining would deliver. All of these except C relate to associations, symptoms, Dx, Rx, outcome.  It is C that is difficult. Probably the best interpretation is replacing Rx in associations with no Rx and then various other Rx. If C means say in other kinds of patients, then it is a matter of associations including those.

A second step of quantification is usually required in which probabilities are obtained as measures of scope based on counting. Of particular interest here is the odds ratio

Two Primary Methods of Asking a Question in The BioIngine  

1. Primarily Symbolic and Qualitative. (more unstructured data dependent) [Release 1]

HDN is behind the scenes but focuses mainly on contextual probabilities between statements. HDNstudent is used to address the issue as a multiple choice exam with indefinitely large numbers of candidate answers, in which the expert end-user can formulate PICO questions and candidate answers, or all these can be derived automatically or semi-automatically. Each initial question can be split into a P, I, C, and O question.

2. Primarily Calculative and Quantitative. (more structured – EHR data dependent) [Release 2]

Focus on intrinsic probabilities, the degree of truth associated with each statement by itself. DiracBuilder used after DiracMiner addresses EBM decision measures as special cases of HDN inference. Of particular interest is an entry

<O |  P, I > / <O   |  P, C>

which is the HDN likelihood or HDN relative risk of the outcome O given patient/population/problem P given I as opposed to C, usually seen as a “NOT I”, and

<NOT O  |  P, I> / <NOT O | P, C>

which is the HDN likelihood or HDN relative risk of NOT getting the outcome O given patient/population/problem P given I as opposed to C usually seen as a “NOT I”. Note though that you get a two for one, because we also have <P, I |  O>, the adjoint form, at the same time, because on the complex conjugate of the other. Note that the ODDS RATIO is the former likelihood ratio over the latter, and hence the HDN odds ratio as it would normally be entered in DiracBuilder is as follows:-

<O | P, I>

/<NOT O | P, C>

<NOT O | P, C>

/<NOT O | P, I>

  • QUALITATIVE / SYMBOLIC

An 84-year-old man in a nursing home has increasing poorly localized lower abdominal pain recurring every 3-4 hours over the past 3 days. He has no nausea or vomiting; the last bowel movement was not recorded. Examination shows a soft abdomen with a palpable, slightly tender, lower left abdominal mass. Hematocrit is 28%. Leukocyte count is 10,000/mm3. Serum amylase activity is within normal limits. Test of the stool for occult blood is positive. What is the diagnosis?

•This is usually addressed by a declared list of multiple choice candidate answers, though the list can be indefinitely large. 30 is not unusual.

•The answers are all assigned probabilities, and the most probable is considered the answer, at least for testing purposes in a medical licensing exam context. These probabilities can make use of probabilities, but predominantly they are contextual probabilities, depending in the relationships between chains and networks of knowledge elements that link the question to each answer.

  • QUANTITATIVE / CALCULATIVE: 

Will my female patient age 50-59 taking diabetes medication and having a body mass index of 30-39 have very high cholesterol if the systolic BP is 130-139 mmHg and HDL is 50-59 mg/dL and non-HDL is 120-129 mg/dL?”.

•This forms a preliminary  Hyperbolic Dirac Net (inference net) from the query, which may be refined and to each statement intrinsic probabilities are assigned, e.g. automatically by data mining.

•This question could properly start “What is the probability that…” . The real answers of interest here are not qualitative statements, but the final probabilities.

•Note the “IF”. But POPPER extends this to relationships beyond IF associative or conditional ones, e.g. verbs of action.

Quantitative Computations :- Odds Ratio and Risk Computations

  • Medical Necessity
  • Laboratory Testing Principles
  • Quality of Diagnosis
  • Diagnosis Test Accuracy
  • Diagnosis Test
    • Sensitivity
    • Specificity
    • Predictive Values – Employing Bayes Theorem (Positive and Negative Value)
  • Coefficient of Variations
  • Resolving Power
  • Prevalence and Incidence
  • Prevalence and Rate
  • Relative Risk and Cohort Studies
  • Predictive Odds
  • Attributable Risk
  • Odds Ratio

Examples Quantitative / Calculative HDN Queries

In The Bioingine.com Release 1 – we are only dealing with Quantitative / Calculative type questions

Examples discussed in section A below are simple to play with to appreciate the HDN power for conducting inference. However, Problems B2 onwards requires some deeper understanding of the Bayesian and HDN analysis.

<‘Taking BP medication’:=’1’ |  ‘Taking diabetes medication’:= ‘1’>

/<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘0’>

A.   Against Data Set 1.csv (2114 records with 33 variables created for Cardiovascular Risk Studies (Framingham Risk Factor)

B.   Against Data Set2.csv (nearing 700,000 records with 196 variables. Truly a large data set with high dimensionality (many columns of clinical and demographic factors), leading to a combinatorial explosion.

Note: in the examples below, you are forming questions or HDN queries such as

For African Caribbean patients 50-59 years old with a BMI of 50-59 what is the Relative Risk of needing to be on BP medication if there is a family history as opposed to no family history?

IMPORTANT: THE TWO-FOR-ONE EFFECT OF THE DUAL. Calculations report a dual value for any probabilistic value implied for the expression ented. In some cases you may be only interest in the first number in the dual, but the second number is always meaningful and frequently very useful. Notably, we say Relative Risk by itself for brevity, but in fact this is only the first number in the dual that is reported. In general, the form

<’A’:=’1’|’B’:=’1’>

/<’A’:=’1’|’B’:=’0’>

yields the following  dual probabilistic value…

(P(’A’:=’1’|’B’:=’1’)/ P(’A’:=’1’|’B’:=’0’),   ( P(’B’:=’1’|’A’:=’1’)/ P(’B’:=0’|’B’:=’1’),

where the first ratio is relative risk RR(P(’A’:=’1’|’B’:=’1’) and the second ratio is predictive odds RR(P(’A’:=’1’|’B’:=’1’).

a.   This inquiry seeking the risk of BP requires being translated into Q-UEL specification as shown below. [All the below Q-UEL queries in red can be copied and entered in the HDN query to get the HDN inference for the pertinent Data Sets.]

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1 ‘ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’0’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

b.    The Q-UEL specified query enables Notational Algebra to work while making inference from the giant semantic lake or the knowledge repository store (KRS).

c.    Recall, KRS is the representation of the universe as a Hyperbolic Dirac Net. This was created by transformation process of the uploaded data set to activate the automated statistical studies.

d.    The query works against the KRS and extracts the inference in HDN format displaying an inverse Bayesian Result; which calculates both classical and zeta probabilities :- Pfwd, Pzfwd & Pbwd, Pzbwd

A1. Relative Risk – High BP Case

Example: – Study of BP = blood pressure (high) in the population data set considered.

This case is very similar, because high BP and diabetes are each comorbidities with high BMI and hence to some extent with each other. Consequently we just substitute diabetes by BP throughout.

Note: for the values enter discreet or continuous

(0) We can in fact test the strength of the above with the following RR, which in effect reads as “What is the relative risk of needing to take BP medication if you are diabetic as opposed to not diabetic?

<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘1’>

/<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘0’>

The following predictive odds PO make sense and are useful here:-

<‘Taking BP medication’:=’1’ | ‘BMI’:= ’50-59’ >

/<‘Taking BP medication’:=’0’ | ‘BMI’:= ’50-59’ >

and (separately entered)

<‘Taking diabetes medication’:=’1’ | ‘BMI’:= ’50-59’ >

/<‘Taking diabetes medication’:=’0’ | ‘BMI’:= ’50-59’ >

And the odds ratio OR would be a good measure here (as it works in both directions). Note Pfwd = Pbw theoretically for an odds ratio.

<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘1’>

<‘Taking BP medication’:=’0’ | ‘Taking diabetes medication’:= ‘0’>

/<‘Taking BP medication’:=’1’ | ‘Taking diabetes medication’:= ‘0’>

/<‘Taking BP medication’:=’0’ | ‘Taking diabetes medication’:= ‘1’>

(1)          For African Caribbean patients 50-59 years old with a BMI of 50-59 what is the Relative Risk of needing to be on BP medication if there is a family history as opposed to no family history?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1‘ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’0’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

(2)          For African Caribbean patients 50-59 years old with a family history of BP what is the Relative Risk of needing to be on BP medication if there is a BMI of 50-59 as opposed to a reasonable BMI of ’20-29’?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’20-29’ >

(3)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 40-49?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’40-49’ and ‘BMI’:= ’50-59’>

(4)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 40-49?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(5)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 40-49?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1‘ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(6)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 30-39?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’30-39and ‘BMI’:= ’40-49’>

(7)          For African Caribbean patients with a family history of BP, what is the Relative Risk of needing to be on BP medication if there is an age of 50-59 rather than 20-29?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’20-29 and ‘BMI’:= ’40-49’>

(8)          For patients with a family history of BP age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on BP medication if they are African Caribbean rather than Caucasian?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘Caucasian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(9)          For patients with a family history of BP age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on BP medication if they are African Caribbean rather than Asian?

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’’1 and ‘Ethnicity’:=‘Asian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(10)       For patients with a family history of BP age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on BP medication if they are African Caribbean rather than Hispanic

< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and  ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking BP medication’:=’1’ | ‘Family history of BP’:=’1’ and ‘Ethnicity’:=‘Hispanic’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

A2. Relative Risk – Diabetes Case

Against Data Set1.csv

Type 2 diabetes is implied here.

(11)       For African Caribbean patients 50-59 years old with a BMI of 50-59 what is the Relative Risk of needing to be on diabetes medication if there is a family history as opposed to no family history?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’0’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

(12)       For African Caribbean patients 50-59 years old with a family history of diabetes what is the Relative Risk of needing to be on diabetes medication if there is a BMI of 50-59 as opposed to a reasonable BMI of ’20-29’?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’20-29’ >

(13)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 40-49?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’40-49’ and ‘BMI’:= ’50-59’>

(14)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 40-49?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(15)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 40-49?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and  ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(16)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 30-39?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’30-39and ‘BMI’:= ’40-49’>

(17)       For African Caribbean patients with a family history of diabetes, what is the Relative Risk of needing to be on diabetes medication if there is an age of 50-59 rather than 20-29?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’20-29and ‘BMI’:= ’40-49’>

A3. Relative Risk – Cholesterol Case

Against Data Set1.csv

(18)       For African Caribbean patients 50-59 years old with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is a family history as opposed to no family history?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and BMI:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

(19)       For African Caribbean patients 50-59 years old with a fat% of 40-49, with a family history of cholesterol, what is the Relative Risk of needing to be on cholesterol medication if there is a BMI of 50-59 as opposed to a reasonable BMI of ’20-29’?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’20-29’ >

(20)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 40-49?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’40-49’ and ‘BMI’:= ’50-59’>

(21)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 40-49?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and  ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(22)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 40-49?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59and ‘BMI’:= ’40-49’>

(23)       For African Caribbean patients with a family history of cholesterol , with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 30-39?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’30-39and ‘BMI’:= ’40-49’>

(24)       For African Caribbean patients with a family history of cholesterol, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if there is an age of 50-59 rather than 20-29?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’20-29and ‘BMI’:= ’40-49’>

(25)       For patients with a family history of cholesterol age 50-59 and BMI of 50-59, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if they are African Caribbean rather than Caucasian?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=1‘’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘Caucasian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(26)       For patients with a family history of cholesterol age 50-59 and BMI of 50-59, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if they are African Caribbean rather than Asian?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘Asian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(27)       For patients with a family history of cholesterol age 50-59 and BMI of 50-59, with a fat% of 40-49, what is the Relative Risk of needing to be on cholesterol medication if they are African Caribbean rather than Hispanic

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:=‘Hispanic’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

(28)       For ‘African Caribbean’ patients with a family history of cholesterol age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on cholesterol medication if they have fat% 40-49 rather than 30-39?

< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:= ‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking cholesterol medication’:=‘1’ | ‘Fat(%)’:=‘40-49’ and ‘Ethnicity’:= ‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59>

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘Caucasian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’>

(29)       For patients with a family history of diabetes age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on diabetes medication if they are African Caribbean rather than Asian?

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and  ‘Ethnicity’:=‘Asian’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’>

(30)       For patients with a family history of diabetes age 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on diabetes medication if they are African Caribbean rather than Hispanic

< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘African Caribbean’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-59’ >

/< ‘Taking diabetes medication’:=’1’ | ‘Family history of diabetes’:=’1’ and ‘Ethnicity’:=‘Hispanic’ and ‘age(years):=’50-59’ and ‘BMI’:= ’50-5’9>

(31)       For patients with a family history of diabetesage 50-59 and BMI of 50-59, what is the Relative Risk of needing to be on diabetes medication if they are African Caribbean rather than Caucasian?

Advertisements

Q-UEL Toolkit for Medical Decision Making :- Science of Uncertainty and Probabilities

Screen Shot 2016-08-24 at 11.07.49 AM

Quantum Universal Exchange Language

Emergent | Interoperability | Knowledge Mining | Blockchain

Q-UEL

  1. It is a toolkit / framework
  2. Is an Algorithmic Language for constructing Complex System
  3. Results into a Inferential Statistical mechanism suitable for a highly complex system – “Hyperbolic Dirac Net”
  4. Involves an approach that is based on the premise that a Highly Complex System driven by the human social structures continuously strives to achieve a higher order in the entropic journey by continuos discerning the knowledge hidden in the system that is in continuum.
  5. A System in Continuum seeking Higher and Higher Order is a Generative System.
  6. A Generative System; Brings System itself as a Method to achieve Transformation. Similar is the case for National Learning Health System.
  7. A Generative System; as such is based on Distributed Autonomous Agents / Organization; achieving Syndication driven by Self Regulation or Swarming behavior.
  8. Essentially Q-UEL as a toolkit / framework algorithmically addresses interoperability, knowledge mining and blockchain; while driving the Healthcare Eco-system into Generative Transformation achieving higher nd higher orders in the National Learning Health System.
  9. It has capabilities to facilitate medical workflow, continuity of care, medical knowledge extraction and representation from vast large sets of structured and unstructured data, automating bio-statistical reasoning leading into large data driven evidence based medicine, that further leads into clinical decision support system including knowledge management and Artificial Intelligence; and public health and epidemiological analysis.

http://www.himss.org/achieving-national-learning-health-system

GENERATIVE SYSTEM :-

https://ingine.wordpress.com/2013/01/09/generative-transformation-system-is-the-method/

A Large Chaotic System driven by Human Social Structures has two contending ways.

a. Natural Selection – Adaptive – Darwinian – Natural Selection – Survival Of Fittest – Dominance

b. Self Regulation – Generative – Innovation – Diversity – Cambrian Explosion – Unique Peculiarities – Co Existence – Emergent

Accountable Care Organization (ACO) driven by Affordability Care Act transforms the present Healthcare System that is adaptive (competitive) into generative (collaborative / co-ordinated) to achieve inclusive success and partake in the savings achieved. This is a generative systemic response contrasting the functional and competitive response of an adaptive system.

Natural selection seems to have resulted in functional transformation, where adaptive is the mode; does not account for diversity.

Self Regulation – seems like is a systemic outcome due to integrative influence (ecosystem), responding to the system constraints. Accounts for rich diversity.

The observer learns generatively from the system constraints for the type of reflexive response required (Refer – Generative Grammar – Immune System – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554270/pdf/emboj00269-0006.pdf)

From the above observation, should the theory in self regulation seem more correct and that adheres to laws of nature, in which generative learning occurs. Then, the assertion is “method” is offered by the system itself. System’s ontology has an implicate knowledge of the processes required for transformation (David Bohm – Implicate Order)

For very large complex system,

System itself is the method – impetus is the “constraint”.

In the video below, the ability for the cells to creatively create the script is discussed which makes the case for self regulated and generative complex system in addition to complex adaptive system.

 

Further Notes on Q-UEL / HDN :-

  1. That brings Quantum Mechanics (QM) machinery to Medical Science.
  2. Is derived from Dirac Notation that helped in defining the framework for describing the QM. The resulting framework or language is Q-UEL and it delivers a mechanism for inferential statistics – “Hyperbolic Dirac Net”
  3. Created from System Dynamics and Systems Thinking Perspective.
  4. It is Systemic in approach; where System is itself the Method.
  5. Engages probabilistic ontology and semantics.
  6. Creates a mathematical framework to advance Inferential Statistics to study highly chaotic complex system.
  7. Is an algorithmic approach that creates Semantic Architecture of the problem or phenomena under study.
  8. The algorithmic approach is a blend of linguistics semantics, artificial intelligence and systems theory.
  9. The algorithm creates the Semantic Architecture defined by Probabilistic Ontology :- representing the Ecosystem Knowledge distribution based on Graph Theory

To make a decision in any domain, first of all the knowledge compendium of the domain or the system knowledge is imperative.

System Riddled with Complexity is generally a Multivariate System, as such creating much uncertainty

A highly complex system being non-deterministic, requires probabilistic approaches to discern, study and model the system.

General Characteristics of Complex System Methods

  • Descriptive statistics are employed to study “WHAT” aspects of the System
  • Inferential Statistics are applied to study “HOW”, “WHEN”, “WHY” and “WHERE” probing both spatial and temporal aspects.
  • In a highly complex system; the causality becomes indeterminable; meaning the correlation or relationships between the independent and dependent variables are not obviously established. Also, they seem to interchange the position. This creates dilemma between :- subject vs object, causes vs outcomes.
  • Approaching a highly complex system, since the priori and posterior are not definable; inferential techniques where hypothesis are fixed before the beginning the study of the system become enviable technique.

Review of Inferential Techniques as the Complexity is Scaled

Step 1:- Simple System (turbulence level:-1)

Frequentist :- simplest classical or traditional statistics; employed treating data random with a steady state hypothesis – system is considered not uncertain (simple system). In Frequentist notions of statistics, probability is dealt as classical measures based only on the idea of counting and proportion. This technique is applied to probability to data, where the data sets are rather small.

Increase complexity: Larger data sets, multivariate, hypothesis model is not established, large variety of variables; each can combine (conditional and joint) in many different ways to produce the effect.

Step 2:- Complex System (turbulence level:-2)

Bayesian :- hypothesis is considered probabilistic, while data is held at steady state. In Bayesian notions of statistics, probability is of the hypothesis for a given sets of data that is fixed. That is, hypothesis is random and data is fixed. The knowledge extracted contains the more subjectivist notions of uncertainty, belief, reliability, or confidence often used in automated inference and decision support systems.

Additionally the hypothesis can be explored only in an acyclic fashion creating Directed Acyclic Graphs (DAG)

Increase the throttle on the complexity: Very large data sets, both structured and unstructured,  Hypothesis random, multiple Hypothesis possible, Anomalies can exist, There are hidden conditions, need arises to discover the “probabilistic ontology” as they represent the system and the behavior within.

Step 3: Highly Chaotic Complex System (turbulence level:-3)

Certainly DAG is now inadequate, since we need to check probabilities as correlations and also causations of the variables, and if they conform to a hypothesis producing pattern, meaning some ontology is discovered which describes the peculiar intrinsic behavior among a specific combinations of the variables to represent a hypothesis condition. And, there are many such possibilities within the system, hence  very chaotic and complex system.

Now the System itself seems probabilistic; regardless of the hypothesis and the data. This demands Multi-Lateral Cognitive approach

Telandic …. “Point – equilibrium – steady state – periodic (oscillatory) – quasiperiodic – Chaotic – and telandic (goal seeking behavior) are examples of behavior here placed in order of increasing complexity”

A Highly Complex System, demands a Dragon Slayer – Hyperbolic Dirac Net (HDN) driven Statistics (BI-directional Bayesian) for extracting the Knowledge from a Chaotic Uncertain System.

BioIngine.com :- High Performance Cloud Computing Platform

Screenshot 2016-08-03 17.51.37

Non-Hypothesis driven Unsupervised Machine Learning Platform delivering Medical Automated Reasoning Programming Language Environment (MARPLE)

Evidence Based Medicine Decision Process is based on PICO

From above link “Using medical evidence to effectively guide medical practice is an important skill for all physicians to learn. The purpose of this article is to understand how to ask and evaluate questions of diagnosis, and then apply this knowledge to the new diagnostic test of CT colonography to demonstrate its applicability. Sackett and colleagues1 have developed a step-wise approach to answering questions of diagnosis:”

Uncertainties in the Healthcare Ecosystem

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146626/

BioIngine.com Platform

Is High Performance Cloud Computing Platform delivering both probabilistic and deterministic computations; while combining HDN Inferential Statistics and Descriptive Statics.

The bio-statistical reasoning algorithm have been implemented in the Wolfram Language; which is a knowledge based programming unified symbolic language. As such symbolic language has a good synergy in implementing Dirac Notational Algebra.

The Bioingine.com; brings the Quantum Mechanics machinery to Healthcare analytics; delivering a comprehensive data science experience that covers both Patient Health and Public Health analytics driven by a range of bio-statistical methods from descriptive to inferential statistics, leading into evidence driven medical reasoning.

The Bioingine.com transforms the large clinical data sets generated by interoperability architectures, such as in Health Information Exchange (HIE) into semantic lake representing the Health ecosystem that is more amenable to bio-statistical reasoning and knowledge representation. This capability delivers evidence based knowledge needed for Clinical Decision Support System better achieving Clinical Efficacy by helping to reduce medical errors.

Algorithm based on Hyperbolic Dirac Net (HDN)

An HDN is a dualization procedure performed on a given inference net that consists of a pair of split-complex number factorizations of the joint probability and its dual (adjoint, reverse direction of conditionality). Hyperbolic Dirac Net is derived from Dirac Notational Algebra that forms the mechanism to define Quantum Mechanics.

A Hyperbolic Dirac Net (HDN) is a truly Bayesian model and a probabilistic general graph model that includes cause and effect as players of equal importance. It is taken from the mathematics of Nobel Laureate Paul A. M. Dirac that has become standard notation and algebra in physics for some 70 years.  It includes but goes beyond the Bayes Net that is seen as a special and (arguably) usually misleading case. In attune with nature, the HDN does not constrain interactions and may contain cyclic paths in the graphs representing the probabilistic relationships between all things (states, events, observations, measurements etc.).  In the larger picture, HDNs define a probabilistic semantics and so are not confined to conditional relationships, and they can evolve under logical, grammatical, definitional and other relationships. It is also, in its larger context, a model of the nature of natural language and human reasoning based on it that takes account of uncertainty.

Explanation: An HDN is an inference net, but it is also best explained by showing that it stands in sharp contrast to the current notion of an inference net that, for historical reasons, is today often taken as meaning the same thing as a  Bayes Net. “A Bayesian network, Bayes network, belief network, Bayes(ian) model or probabilistic directed acyclic graphical model is a probabilistic graphical model (a type of statistical model) that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.”  [https://en.wikipedia.org/ wiki/Bayesian_ network].  In practice, such nets have little to do with Bayes, nor Bayes’ rule, law, theorem or equation that  allows verification that probabilities used are consistent with each other and all other probabilities that can be derived from data. Most importantly, in reality, all things interact in the manner of a general graph, and a DAG is in general a poor model of reality since it consequently may miss key interactions.

DiracMiner 

Is a machine learning based biostatistical algorithm that transforms Large Data Sets such as Millions of Patient Records  into Semantic Lake as defined by HDN driven computations that is a mix of Numbers theory (Riemann Zeta) and Information Theory (Dual Bayesian or HDN)

The HDN – Semantic Lake, represents the health-ecosystem as captured in Knowledge Representation Store (KRS) consisting of Billions of Tags (Q-UEL Tags).

DiracBuilder

Send an HDN query to KRS to seek HDN probabilistic inference / estimate. The Query for the inference contains the HDN that the user would like to have, and DiracBuilder helps get the best similar dual net by looking at what Billions of QUEL tags and joint probabilities are available.

High Performance Cloud Computing

The Bioingine.com Platform computes (probabilistic computations) against the billions of Q-UEL tags employing extended in-memory processing technique. The creation of the billions of Q-UEL tags and querying against them is combinatorial explosionproblem.

The Bioingine platform working against large clinical data sets or while residing within the large Patient Health Information Exchange (HIE) works in creating opportunity for Clinical Efficacy and also facilitates in the better achievement of “Efficiencies in the Healthcare Management” that ACO seeks.

Our endeavors have resulted in the development of revolutionary Data Science to deliver Health Knowledge by Probabilistic Inference. The solution developed addresses critical areas both scientific and technical, notably the healthcare interoperability challenges of delivering semantically relevant knowledge both at patient health (clinical) and public health level (Accountable Care Organization).

Multivariate Cognitive Inference from Uncertainty

Solving High-dimentional Multivariate Inference involving variables factors excess of factor 4 representing the high-dimentioanlity that characteristics of the healthcare domain.

EBM Diagnostic Risk Factors and Calculating Predictive Odds

Q-UEL tags of form

< A Pfwd:=x |  assoc:=y | B Pbwd:=z >

Say A = disease, B = cause,  drug,  or diagnostic prediction of disease, are designed to imply the following, knowing numbers x, y, and z.

P(A|B) = x

K(A; B) = P(A,B) / (P(A)P(B))   = y

P(BIA) = z

From which we can calculate the following….

P(A) = P(A|B)/K(A;B)

P(B) = P(B|A)/K(A;B)

P( NOT A) = 1 – P(A)

P(NOT B) = 1 – P(B)

P(A, B) = P(A|B)P(B) = P(B|A) P(A)

P(NOT A,  B)= P(B) – P(A B)

P(A, NOT B) = P(A) – P(A B)

P(NOT A, NOT B) = 1 – P(A, B) – P(NOT A, B) – P(A NOT B)

P(NOT A | B)  = 1  – P(A|B)

P(NOT B | A) = 1 –  P(B|A)

P(A | NOT B) =  P(A, NOT B)/P(NOT B)

P(B | NOT A) =  P(NOT A, B)/P(NOT A)

Positive Predictive Value P+ = P(A | B)

Negative Predictive value  P- = P(NOTA | NOT B)

Sensitivity = P(B | A)

Specificity = P(NOT B | NOT A)

Accuracy A =   P(A | B) + P(NOT A | NOT B)

Predictive odds PO = P(A | B) / P(NOT A | B)

Relative Risk RR = Positive likelihood ratio  LR+ =  P(A | B) / P(A | NOT B)

Negative  likelihood ratio  LR- =  P(NOT A | B) /  NOT A | NOT B)

Odds ratio OR = P(A, B)P(NOT A, NOT B)  /  (  P(NOT A,  B)P(A, NOT B) )

Absolute risk reduction ARR =  P(NOT A | B) – P(A | B) (where A is disease and B is drug etc).

Number  Needed to Treat NNT = +1 / ARR if ARR > 0 (giving positive result)

Number  Needed to Harm  NNH = -1 / ARR  if ARR > 0 (giving positive result)

Example:-

BP = blood pressure (high)

This case is very similar, because high BP and diabetes are each comorbidities with high BMI and hence to some extent with each other.  Consequently we just substitute diabetes by BP throughout.

(0) We can in f act test the strength of the above  with the following RR, which in effect reads as “What is the relative risk of needing to take BP medication if you are diabetic as opposed to not diabetic?

<‘Taking BP  medication’:=’1’  |  ‘Taking diabetes medication’:= ‘1’>

/<‘Taking BP  medication’:=’1’  | ‘Taking diabetes medication’:= ‘0’>

The following predictive odds  PO make sense and are useful here:-

<‘Taking BP  medication’:=’1’  |  ‘BMI’:= ’50-59’  >

/<‘Taking BP  medication’:=’0’  |  ‘BMI’:= ’50-59’  >

and (separately entered)

<‘Taking diabets medication’:=’1’  |  ‘BMI’:= ’50-59’  >

/<‘Taking diabetes  medication’:=’0’  |  ‘BMI’:= ’50-59’  >

And the odds ratio OR would be a good measure here (as it works in both directions). Note Pfwd = Pbw theoretically for an odds ratio.

<‘Taking BP  medication’:=’1’  | ‘Taking diabetes medication’:= ‘1’>

<‘Taking BP  medication’:=’0’  | ‘Taking diabetes medication’:= ‘0’>

/<‘Taking BP  medication’:=’1’  | ‘Taking diabetes medication’:= ‘0’>

/<‘Taking BP  medication’:=’0’  | ‘Taking diabetes medication’:= ‘1’>

Value Added Partners Invited – BioIngine.com; Cognitive Computing Platform democratizing Medical Knowledge at Point of Care.

Screenshot 2016-06-24 10.59.09

Commoditization of Data Science and unleashing Democratized Medical Knowledge.

The mission of Ingine Inc as a startup is to bring advancement in data science as applicable to medical knowledge extraction from large data sets.

Screenshot 2016-06-24 11.29.39

Particularly following are the differentiators owing to which Ingine Inc is a candidate startup in hope of advancing science in difficult to solve areas; driven by decades of research by Dr. Barry Robson.

  1. Introducing Hyperbolic Dirac Net (HDN); a machinery created borrowing from Quantum Mechanics to advance data mining and deep learning beyond what Bayesian could deliver; against the backdrop of very large data sets riddled with uncertainty and high-dimentionality. Most importantly, HDN based non-hypothesis approach allows us to create a learning system workbench that is also amenable to research and discovery related efforts based on deep learning techniques.
  2. Create large data driven evidence based medicine (EBM). This means creating scientifically curated medical knowledge having gone through a process akin to systematic review.
  3. Integrate Patient centric studies with epidemiological studies to achieve a comprehensive framework to advance integrated large data driven bio-statistical approach which addresses both systemic and also functional concerns. This means blending both descriptive and inferential (HDN) statistical approaches.
  4. Introduce a comprehensive notational and symbolic programming framework that allows us to create a unified mathematical framework to deliver both probabilistic and deterministic methods of reasoning which allows us to create varieties of cognitive experience from large sets of data riddled with uncertainty.
  5. Use all of the above in creating a Point of Care platform experience that delivers EBM in a PICO format as followed by the industry as a gold standard.

While PICO is employed as a framework to create EBM driven diagnosis process as a consequence of both qualitative and quantitative methods that better achieves systematic review; medical exam setting is used as a specification to define the template for enacting the EBM process. This is based on the caveat that for a system to qualify as an expert system in the medical area, it should also be able to pass medical exams based on the knowledge the learning system has acquired that is scientifically curated by both automated machine learning and manual intervention efforts.

As part of the overall architecture, that employs some ingenious design techniques such as non-predicated, non -hypothesis driven and schema-less design; semantic lake a tag driven knowledge repository is created from which the cognitive experience is created employing inferential statistics. Furthermore the capability can be delivered as a cloud computing platform where parallelization, in-memmory processing, high performance computing (HPC) and elastic scaling are addressed.

Bioingine.com; Integrated Platform for Population Health and EBM based Patient Health Analytics

Ingine Inc; Bioingine.com

Deductive Logic to Inductive Logic

Notational Algebra & Symbolic Programming

Deductive – What | Inductive – Why, How

Deductive:- Statistical Summary of the Population by each Variable Recorded

Deductive:- Statistical Distribution of a Variable

Deductive:- Partitioning Data into Clusters

Cluster analysis is an unsupervised learning technique used for classification of data. Data elements are partitioned into groups called clusters that represent proximate collections of data elements based on a distance or dissimilarity function. Identical element pairs have zero distance or dissimilarity, and all others have positive distance or dissimilarity.

http://www.francescobonchi.com/CCtuto_kdd14.pdf

 

correlation coefficient is a coefficient that illustrates a quantitative measure of some type of correlation and dependence, meaning statistical relationships between two or more random variables or observed data values.

The regression equation can be thought of as a mathematical model for a relationship between the two variables. The natural question is how good is the model, how good is the fit. That is where r comes in, the correlation coefficient (technically Pearson’s correlation coefficient for linear regression).

Inductive :- Hyperbolic Dirac Net 

Notes on Synthesis of Forms :-

Christopher Alexander on Inductive Logic

The search for causal relations of this sort cannot be mechanically experimental or statistical; it requires interpretation: to practice it we must adopt the same kind of common sense that we have to make use of all the time in the inductive part of science. The data of scientific method never go further than to display regularities. We put structure into them only by inference and interpretation. In just the same way, the structural facts about a system of variables in an ensemble will come only from the thoughtful interpretation of observations.

We shall say that two variables interact if and only if the designer can find some reason (or conceptual model) which makes sense to him and tells him why they should do so.

But, in speaking of logic, we do not need to be concerned with processes of inference at all. While it is true that a great deal of what is generally understood to be logic is concerned with deduction, logic, in the widest sense, refers to something far more general . It is concerned with the form of abstract structures, and is involved the moment we make pictures of reality and then seek to manipulate these pictures so that we may look further into the reality itself . It is the business of logic to invent purely artificial structures of elements and relations. 

Christopher Alexander:- Sometimes one of these structures is close enough to a real situation to be allowed to represent it. And then, because the logic is so tightly drawn, we gain insight into the reality which was previously withheld from us.

Quantum Mechanics Driven Knowledge Inference for Medical Diagnosis

http://www.bioingine.com/?p=528

HDN Inference

HDN Results :- Inverse Bayesian Probability

(more…)

New Kind of Cognitive Science – Medical Ontology – A.I driven Reasoning

cover_imageBioingine_Platform

 

 

2nd Order Semantic Web and A.I driven Reasoning – 300 Years Plus of Crusade

Bioingine.com | Ingine Inc

Screenshot 2016-02-02 11.30.13

Chronology of Development of Hyperbolic Dirac Net (HDN) Inference. 

https://en.wikipedia.org/wiki/Thomas_Bayes

From Above Link:-

1. 1763. Thomas Bayes was an English statistician, philosopher and Presbyterian minister who is known for having formulated a specific case of the theorem that bears his name: Bayes’ theorem.

 Bayes’s solution to a problem of inverse probability was presented in “An Essay towards solving a Problem in the Doctrine of Chances” which was read to the Royal Society in 1763 after Bayes’ death

https://en.wikipedia.org/wiki/Bayes%27_theorem

From Above Link:-

In probability theory and statisticsBayes’ theorem (alternatively Bayes’ law or Bayes’ rule) describes the probability of an event, based on conditions that might be related to the event.

When applied, the probabilities involved in Bayes’ theorem may have different probability interpretations. In one of these interpretations, the theorem is used directly as part of a particular approach to statistical inference. With the Bayesian probability interpretation the theorem expresses how a subjective degree of belief should rationally change to account for evidence: this is Bayesian inference, which is fundamental to Bayesian statistics. However, Bayes’ theorem has applications in a wide range of calculations involving probabilities, not just in Bayesian inference.

https://en.wikipedia.org/wiki/Bayesian_inference

From Above Link:-

Bayesian inference is a method of statistical inference in which Bayes’ theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including scienceengineeringphilosophymedicinesport, and law. In the philosophy of decision theory, Bayesian inference is closely related to subjective probability, often called “Bayesian probability“.

2. 1859, Georg Friedrich Bernhard Riemann proposed Riemann zeta function,function useful in number theory for investigating properties of prime numbers. Written as ζ(x), it was originally defined as the infinite series

ζ(x) = 1 + 2−x + 3−x + 4−x + ⋯.

The theory should perhaps be distinguished from an existing purely number-theoretic area sometimes also known as Zeta Theory, which focuses on the Riemann Zeta Function and the ways in which it governs the distribution of prime numbers

http://mathworld.wolfram.com/RiemannZetaFunction.html

The Riemann zeta function is an extremely important special function of mathematics and physics that arises in definite integration and is intimately related with very deep results surrounding the prime number theorem. While many of the properties of this function have been investigated, there remain important fundamental conjectures (most notably the Riemann hypothesis) that remain unproved to this day. The Riemann zeta function is defined over the complex plane for one complex variable, which is conventionally denoted (instead of the usual ) in deference to the notation used by Riemann in his 1859 paper that founded the study of this function (Riemann 1859). It is implemented in the Wolfram Language as Zeta[s].

3. 1900. Ramanujan’s mathematical work was primarily in the areas of number theory and classical analysis. In particular, he worked extensively with infinite series, integrals, continued fractions, modular forms, q-series, theta functions, elliptic functions, the Riemann Zeta-Function, and other special functions.

Hardy wrote in Ramanujan’s obituary [14]:

There is always more i n one of Ramanujan’s formulae than meets the eye, as anyone who sets to work to verify those which look the easiest will soon discover. In some the interest lies very deep, in others comparatively near the surface; but there is not one, which is not curious and entertaining.

http://www.integralworld.net/collins18.html

From above link :-

Now there is a famous account of the gifted Indian mathematician Ramanujan who when writing to Hardy at Cambridge regarding his early findings included the seemingly nonsensical result,

1 + 2 + 3 + 4 + ……(to infinity) = – 1/12.

Initially Hardy was inclined to think that he was dealing with a fraud, but on further reflection realized that Ramanujan was in fact describing the Riemann Zeta Function (for s = – 1). He could then appreciate his brilliance as one, who though considerably isolated and without any formal training, had independently covered much of the same ground as Riemann.

However it still begs the question as to what the actual meaning of such a result can be, for in the standard conventional manner of mathematical interpretation, the sum of the series of natural numbers clearly diverges.

The startling fact is that this result – though indirectly expressed in a quantitative manner – actually expresses a qualitative type relationship (pertaining to holistic mathematical interpretation).

Uncovering Ramanujan’s “Lost” Notebook: An Oral History

http://arxiv.org/pdf/1208.2694.pdf

ROBERT P. SCHNEIDER

From above link :-

Whereas Ramanujan’s earlier work dealt largely with classical number-theoretic objects such as q-series, theta functions, partitions and prime numbers—exotic, startling, breathtaking identities built up from infinite series, integrals and continued fractions—in these newfound papers, Andrews found never-before-seen work on the mysterious “mock theta functions” hinted at in a letter written to Hardy in Ramanujan’s final months, pointing to realms at the very edge of the mathematical landscape. The content of Ramanujan’s lost notebook is too rich, too ornate, too strange to be developed within the scope of the present article. We provide a handful of stunning examples below, intended only to tantalize—perhaps mystify—the reader, who is encouraged to let his or her eyes wander across the page, picking patterns like spring flowers from the wild field of symbols.

The following are two fantastic q-series identities found in the lost notebook, published by Andrews soon after his discovery, in which is taken to be a complex number with |q| <1

Another surprising expression involves an example of a mock theta function provided by Ramanujan in the final letter he sent to Hardy

In the words of mathematician Ken Ono, a contemporary trailblazer in the field of mock theta functions, “Obviously Ramanujan knew much more than he revealed [14].” Indeed, Ramanujan then “miraculously claimed” that the coefficients of this mock theta function obey the asymptotic relation

The new realms pointed to by the work of Ramanujan’s final year are now understood to be ruled by bizarre mathematical structures known as harmonic Maass forms. This broader perspective was only achieved in the last ten years, and has led to cutting-edge science, ranging from cancer research to the physics of black holes to the completion of group theory. 

Yet details of George Andrews’s unearthing of Ramanujan’s notes are only sparsely sketched in the literature; one can detect but an outline of the tale surrounding one of the most fruitful mathematical discoveries of our era. In hopes of contributing to a more complete picture of this momentous event and its significance, here we weave together excerpts from interviews we conducted with Andrews documenting the memories of his trip to Trinity College, as well as from separate interviews with mathematicians Bruce Berndt and Ken Ono, who have both collaborated with Andrews in proving and extending the contents of Ramanujan’s famous lost notebook.

4. Elie Joseph Cartan, developed “Theory of Spinors

https://archive.org/details/TheTheoryOfSpinors

https://en.wikipedia.org/wiki/Spinor

From above link:-

In geometry and physics, spinors are elements of a (complexvector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. When a sequence of such small rotations is composed (integrated) to form an overall final rotation, however, the resulting spinor transformation depends on which sequence of small rotations was used, unlike for vectors and tensors. A spinor transforms to its negative when the space is rotated through a complete turn from 0° to 360° (see picture), and it is this property that characterizes spinors. It is also possible to associate a substantially similar notion of spinor to Minkowski space in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in geometry by Élie Cartan in 1913. In the 1920s physicists discovered that spinors are essential to describe the intrinsic angular momentum, or “spin”, of the electron and other subatomic particles.

5. 1928, Paul A M Dirac derived the Dirac equation, which In particle physics, is a relativistic wave equation.

From above link:-

http://www.mathpages.com/home/kmath654/kmath654.htm

http://mathworld.wolfram.com/DiracEquation.html

The quantum electrodynamical law which applies to spin-1/2 particles and is the relativistic generalization of the Schrödinger equation. In dimensions (three space dimensions and one time dimension), it is given by

DIRAC1

6. 1930. Dirac publishes his book on his pivotal view of quantum mechanics, including his earliest mentions of an operator with the properties of the hyperbolic number such that hh = +1. It extends the theory of wave mechanics to particle mechanics. 
P. A. M. Dirac, The Principles of Quantum Mechanics, First Edition, Oxford University Press, Oxford (1930).

7. 1933. In his Nobel Prize Dinner speech, Dirac states that mechanical methods are applicable to all forms of human thought where numbers are involved. http://www.nobelprize.org/nobel_prizes/physics/laureates/1933/dirac-speech.html

8. 1939. DIRAC PUBLISHES HIS BRAKET NOTATION. It is incorporated into the third edition of his book.

P.A.M. Dirac (1939). A new notation for quantum mechanics, Mathematical Proceedings of the Cambridge Philosophical Society 35 (3): 416–418

9. 1974. Robson develops his Expected Information approach that preempts the Bayes Net method.

B. Robson, Analysis of the Code Relating Sequence to Conformation in Globular Proteins: Theory and Application of Expected Information, Biochem. J141, 853-867 (1974).

10. 1978. The Expected Information approach crystallizes as the GOR method widely used in bioinformatics.

Garnier, D. J. Osguthorpe, and B. Robson, Analysis of the Accuracy and Implications of Simple Methods for Predicting the Secondary Structure of Globular Proteins”, J. Mol. Biol. 120, 97-120 (1978). 


11. 1982 . Buchannan and Shortliffe describe the first medical Expert System. It is based on probabilistic statements, but sets a tradition of innovation and diverse controversial methods in automated medical inference.

Buchanan, E.H. Shortliffe, (1982) Rule Based Expert Systems. The Mycin Experiments of the Stanford Heuristic Programming Project, Addison-Wesley: Reading, Massachusetts.

12. 1985. Pearl Gives Full Accound the Bayes Net method.

Pearl, Probabilistic Reasoning in Intelligent Systems. San Francisco CA: Morgan Kaufmann (1985).

13. March 1989, Sir Tim Berners-less invented WWW: – Introduced non-linear linking of information across systems.

Tim laid out his vision for what would become the Web in a document called “Information Management: A Proposal”.Believe it or not, Tim’s initial proposal was not immediately accepted. In fact, his boss at the time, Mike Sendall, noted the words “Vague but exciting” on the cover. The Web was never an official CERN project, but Mike managed to give Tim time to work on it in September 1990. He began work using a NeXT computer, one of Steve Jobs’ early products.

14. 1997. Clifford Algebra using becomes more widely recognized as a tool for engineers as well as scientists and physicists.

Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, Chichester (1997)

15. 1999. Tim Berners-Lee described the Semantic Web vision in the following terms

I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web, the content, links, and transactions between people and computers. A Semantic Web, which should make this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The intelligent agents people have touted for ages will finally materialize. (1999)

16. 2000. Khrennikov gives description of a primarily h-complex quantum mechanics.

Khrenikov, Hyperbolic quantum mechanics, Cornell University Library, arXiv:quant-ph/0101002v1 (2000).

17. 2000. Bucholz and Sommer refine work showing that neural networks as inference systems modeled on the brain can usefully use the hypercomplex imaginary number h.

S. Buchholz, and G. Sommer, A hyperbolic multilayer perceptron International Joint Conference on Neural Networks, IJCNN 2000, Como,Italy, Vol. 2 of pp. 129-133. Amari, S-I and. Giles, C.L M. Gori. M. and Piuri, V. Eds. IEEE Computer Society Press, (2000).

18. 2003. Robson Points out that the Expected Information method in bioinformatics is really the use of the partially summated Riemann Zeta function, and a best choice for treatment of sparse data in data mining in general.

B Robson (2003) “Clinical and Pharmacogenomic Data Mining. 1. The generalized theory of expected information and application to the development of tools” J. Proteome Res. (Am. Chem. Soc.) 283-301, 2 

19. 2003. Nitta Shows that the power of the h-complex approach in neural nets is primarily due to its ability to solver the notorious exclusive-or logical problem in a single neuron.

Nitta, Solving the XOR problem and the detection of symmetry using a single complex-valued neuron, Neural Networks 16:8, 1101-1105, T. (2003).

20. 2003. Khrennikov consolidates the notion of an extensively h-complex quantum mechanics, but feels that i-complex, h-complex, and real world mechanics are three spate systems.

A.Khrennikov, A. Hyperbolic quantum mechanics, Adv. in Applied Clifford Algebras, Vol.13, 1 (2003). 

21.2004. Khrennikov notes possible relation between h-complex quantum mechanics and mental function.

Khrennikov, On Quantum-Like Probabilistic Structure of Mental Information, Open Systems Information Dynamics, Vol. 11, 3, 267-275 (2004).

22. 2004 Rochon shows that the full Riemann Zeta function is both i-complex and h-complex.

Rochon, A Bicomplex Riemann Zeta Function, Tokyo J. of Math.

23. 2004. Robson argues that zeta theory is a solution to high dimensionality problems in data mining.

Robson, The Dragon on the Gold: Myths and Realities for Data Mining in Biotechnology using Digital and Molecular Libraries, J. Proteome Res. (Am. Chem. Soc.) 3 (6), 1113 – 9 (2004).

24. 2005. Robson argues that all statements in zeta theory and in prime number theory are really statements relevant to data and data mining, and describes first link to Dirac’s quantum mechanics and Dirac’s braket notation.

Robson, Clinical and Pharmacogenomic Data Mining: 3. Zeta Theory As a General Tactic for Clinical Bioinformatics, J. Proteome Res. (Am. Chem. Soc.) 4(2); 445-455 (2005) 


25. 2005. Code CliniMiner/Fano based on Zeta Theory and prime number theory is used in first pioneering effort in data mining large number of patient records.

Mullins, I. M., M.S. Siadaty, J. Lyman, K. Scully, G.T. Garrett, G. Miller, R. Muller, B. Robson, C. Apte, C., S. Weiss, I. Rigoutsos, D. Platt, and S. Cohen, Data mining and clinical data repositories: Insights from a 667,000 patient data set, Computers in Biology and Medicine, 36(12) 1351 (2006). 


26. 2007. Robson recognizes that the imaginary number required to reconcile zeta theory with quantum mechanics and to allow Dirac notation to be used in inference is the hyperbolic imaginary number h, not the imaginary number i. Unaware of the work of Khrennikov, he makes no Khrennikov-like distinction between h-complex quantum mechanics and the everyday world.

Mullins, I. M., M.S. Siadaty, J. Lyman, K. Scully,G.T. Garrett, G.Miller, R. Muller, B.Robson, C. Apte, C., S. Weiss, I. Rigoutsos, D. Platt, and S. Cohen, Data mining and clinical data repositories: Insights from a 667,000 patient data set, Computers*in*Biology* and*Medicine, 36(12) 1351 (2006)

27. 2007. Robson recognizes that the imaginary number required to reconcile zeta theory with 
quantum mechanics and to allow Dirac notation to be used in inference is the hyperbolic imaginary number h, not the imaginary number i. Unaware of the work of Khrennikov, he makes no Khrennikov like distinction between h complex quantum mechanics and the every day world.

Robson, The New Physician as Unwitting Quantum Mechanic: Is Adapting Dirac’s Inference System Best Practice for Personalized Medicine, Genomics and Proteomics, J. Proteome Res. (A. Chem. Soc.), Vol. 6, No. 8: 3114 – 3126, (2007). 


Robson, B. (2007) “Data Mining and Inference Systems for Physician Decision Support in Personalized Medicine” Lecture and Circulated Report at the 1st Annual Total Cancer Care Summit, Bahamas 2007. 


28. 2008. Data Mining techniques using the full i-complex and h-complex zeta function are developed.

Robson, Clinical and Pharmacogenomic Data Mining: 4. The FANO Program and Command Set as an Example of Tools for Biomedical Discovery and Evidence Based Medicine” J. Proteome Res., 7 (9), pp 3922–3947 (2008). 


29. 2008. Nitta and Bucholtz explore decision process boundaries of h-complex neural nets.

Nitta, and S. Bucholtz, On the Decision Boundaries of Hyperbolic Neurons. In 2008 International Joint Conference on Neural Networks (IJCNN). 


30. 2009. Semantic Web starts to emerge but runs into bottleneck regarding the best approach for probabilistic treatment.

Prediou and H. Stuckenschmidt, H. Probabilistic Models for the SW – A Survey. http://ki.informatik.unimannheim.de/fileadmin/ publication/ Predoiu08Survey.pdf (last accessed 4/29/2010) 


31. 2009. Baek and Robson propose that, for reasons of bandwidth limitations and security, the Internet should consist of data-centric computing by smart software robots. Robson indicates that they could be based on h-complex inference systems and link to semantic theory.

Robson B.. and Baek OK. The Engines of Hippocrates. From the Dawn of Medicine to Medical and Phrmaceuteutical Infomatics, Wiley, 2009. 

Robson B. (2009) “Towards Intelligent Internet-Roaming Agents for Mining and Inference from Medical Data”, Future of Health Technology Congress, Technology and Informatics, Vol. 149, 157-177 IOS Press 

Robson, B. (2009) “Links Between Quantum Physics and Thought” (A. I. Applications in Medicine) , Future of Health Technology Congress, Technology and Informatics, Vol. 149, 157-177 IOS Press. 

32. 2009. Nivitha et al. develop new learning algorithms for complex-valued networks.

S. Savitha, S. Suresh, S. Sundararajan, and P, Saratchandran, A new learning algorithm with logarithmic performance index for complex-valued neural networks, Neurocomputing 72 (16-18), 3771-3781 (2009).

33. 2009. Khrennikov argues for the h-complex Hilbert space as providing the “contextual” (underlying rationale, hidden variables etc.) for all quantum mechanics.

Khrennikov, Contextual Approach to Quantum Formalism, Springer (2009) 

34. 2010. Robson and Vaithiligam describe how zeta theory and h-complex probabilistic algebra can resolves challenges in data mining by the pharmaceutical industry.

Robson and A. Vaithiligam, Drug Gold and Data Dragons: Myths and Realities of Data Mining in the Pharmaceutical Industry pp25-85 in Pharmaceutical Data Mining, Ed Balakin, K. V. , John Wiley Sons (2010).

35. 2010. PCAST. December Report by the US President’s Council of Advisors on science and Technology calls for an XML-like Universal Exchange Langue for medicine including disaggregation for the patient record on the Internet for patient access, security, and privacy.

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it- report.pdf 

36. 2011. First description of Q-UEL in response to PCAST 2010.

Robson, B., Balis, U. G. J. and Caruso, T. P. (2011)“Considerations for a Universal Exchange Language for Healthcare.” In Proceedings of 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services (Healthcom 2011), 173– 176. Columbus, MO: IEEE, 2011. 

 37. 2011. Robson and Colleagues develop the method of match-and-edit instructions for extracting

Robson, B., Li, J., Dettinger, R., Peters, A., and Boyer, S.K. (2011), Drug discovery using very large numbers of patents. General strategy with extensive use of match and edit operations. Journal of Computer-Aided Molecular Design 25(5): 427-441 

38. 2011. Kuroe et al. consolidate the theory of h– complex neural nets.

Kuroe, T. Shinpei, and H. Iima, Models of Hopfield-Type Clifford Neural Networks and Their Energy Functions – Hyperbolic and Dual Valued Networks, Lecture Notes in Computer Science, 7062, 560 (2011).

39. 2012. Robson argues that h-complex algebra is an appropriate basis for Artificial Intelligence in the Pharmaceutical Industry.

Robson, B. (2012) “Towards Automated Reasoning for Drug Discovery and Pharmaceutical Business Intelligence”, Pharmaceutical Technology and Drug Research, 2012 1: 3 ( 27 March 2012 ) 


40. 2013. Goodman and Lassiter attempt to reconcile and restore interest in probabilistic semantics after a long period of domination by classical logic. 
N. D. Goodman and D. Lassiter, Probabilistic Semantics and Pragmatics: Uncertainty in Language and Thought,

https://web.stanford.edu/~ngoodman/papers/Goodman-HCS-final.pdf

41. 2013. Robson argues for importance of h-complex approach for measures in epidemiology. Robson, B. (2013)

“Towards New Tools for Pharmacoepidemiology”, Advances in Pharmacoepidemiology and Drug Safety, 1:6,

http://www.omicsgroup.org/journals/towards-new-tools-for-pharmacoepidemiology-2167-1052.1000123.pdf

42. 2013 Robson promotes Q-UEL from a public health perspective.
B. Robson, Rethinking Global Interoperability in Healthcare. Reflections and Experiments of an e-Epidemiologist from Clinical Record to Smart Medical Semantic Web Johns Hopkins Grand Rounds Lectures (last accessed 3/14/2013).

Screenshot 2016-02-02 11.30.13

http://dhsi.med.jhmi.edu/GrandRoundsVideo/Feb15-2013/SilverlightLoader.html

43. 2013 Robson and Caruso describe first version of Q-UEL in greater Detail.

Robson, B, and TP Caruso (2013) “A Universal Exchange Language for Healthcare” MedInfo ’13: Proceedings of the 14th World Congress on Medical and Health Informatics, Copenhagen, Denmark, Edited by CU Lehmann, E Ammenwerth, and C Nohr. IOS Press, Washington, DC, USA. http://quantalsemantics.com/documents/MedInfo13-RobsonCaruso_V6.pdf; http://ebooks.iospress.nl/publication/34165

44. 2014. Robson et al. release formal description of consolidated second version of Q-UEL.

Robson, T. P. Caruso and U. G. J. Balis, Suggestions for a Web Based Universal Exchange and Inference Language for Medicine, Computers in Biology and Medicine, 
43(12) 2297 (2013).

45. 2013. Moldoveneua expresses view that hyperbolic quantum mechanics can’t also include wave mechanics. Possible attack on Khrennikov’s idea that hyperbolic quantum mechanics can show 
interference as for waves. Signs of growing sense that hyperbolic quantum mechanics is simply the everyday world described in terms of the machinery of traditional quantum mechanics.

Moldoveanu, Non viability of hyperbolic quantum mechanics as a theory of Nature, Cornell University Library, arXiv:1311.6461v2 [quant-ph] (2013).

46. 2013. First full description of the Hyperbolic Dirac Net and its relation to Q-UEL and to Bayes Nets.

Robson, Hyperbolic Dirac Nets for Medical Decision Support. Theory, Methods, and Comparison with Bayes Nets, Computers in Biology and Medicine, 51, 183 (2013).

http://www.sciencedirect.com/science/article/pii/S0010482514000778

47. 2014. Kunegis et al.c develop h-complex algorithms for dating recommender systems.

Kunegis, G. Gröner, and T, Gottrron, On-Line Dating Recommender Systems, the Split Complex Number Approach, (Like/Dislike, Similar/Disimilar) http://userpages.uni- koblenz.de/~kunegis/paper/kunegis-online-dating-recommender-systems-the-split- complex-number-approach.pdf (last accessed 6/1/2014).

48. 2015. Robson describes extension of Hyperbolic Dirac Net to semantic reasoning and probabilistic lingusitics. 


Robson, B. “POPPER, a Simple Programming Language for Probabilistic Semantic Inference in Medicine. Computers in Biology and Medicine ” Computers in biology and Medicine”, (in press), DOI: 10.1016/j.compbiomed.2014.10.011 (2015). 


http://www.ncbi.nlm.nih.gov/pubmed/25464353

49. 2014. Yosemite Manifesto – a response to PCAST 2010 that the Semantic Web should provide healthcare IT, al though preempted by Q-UEL

http://yosemitemanifesto.org/ (last accessed 7/5/2014). 

50. 2015. Robson et al. describe medical records in Q-UEL format and PCAST disaggregation for patient security and privacy.

Robson, B., Caruso, T, and Balis, U. G. J. (2015) “Suggestions for a Web Based Universal Exchange and Inference Language for Medicine. Continuity of Patient Care with PCAST Disaggregation.” Computers in Biology and Medicine (in press) 01/2015; 56:51. DOI: 10.1016/j.compbiomed.2014.10.022 

51. 2015. Mathematician Steve Deckelman of U. Wisconsin-Stout and Berkeley validates the theoretical principles Hyperbolic Dirac Net.

Deckelman and Robson, B. (2015)“Split-Complex Numbers and Dirac Bra-Kets” Communications in Information andSystems (CIS), in press.

http://www.diracfoundation.com/?p=148

From Above Link:-

The inference net on which this dualization is performed is defined as an estimate of a probability as an expression comprising simpler probabilities and or association measures, i.e. each with fewer attributes (i.e. arguments, events, states, observations or measurements) that the joint probability estimated, where each attribute corresponds to nodes of a general graph and the probabilities or association measures represent their interdependencies as edges. It is not required that the inference net be an acyclic directed graph, but the widely used BN that satisfies that description by definition is a useful starting point for making use of the given probabilities to address the same or similar problems. Specifically for the estimation of a joint probability, and HDN properly constructed with prior probabilities, and whether or not it contains cyclic paths, is purely real valued and its construction principles represent a generalization of Bayes Theorem. Any imaginary part indicates the degree of departure from Bayes Theorem over the net as a whole, and the direction of conditionality in which the degree of departure occurs, and thus the HDN provides an excellent book-keeping tool that Bayes Theorem is satisfied overall. Specially for the estimation of a conditional probability, it follows conversely from the above that any expression for a joint probability validated by the above means can serve as the generator of an HDN for the estimation of a conditional probability simply by dividing it by the HDN counterparts of prior probabilities, whence the resulting net is not purely real save by coincidence of probability values.

52. 2015. Implementation of a web based universal exchange and inference language for medicine: Sparse data, probabilities and inference in data mining of clinical data repositories

Barry Robson and Srinidhi Boray

http://www.computersinbiologyandmedicine.com/article/S0010-4825(15)00257-7/abstract

52. 2015. Robson, B., and S. Boray, The Structure of Reasoning in Answering Multiple Choice Medical Licensing Examination Questions. Computer Studies   towards Formal Theories of Clinical Decision Support and Setting and Answering Medical Licensing Examinations, Workshop Lecture presentation, Proceedings of the IEEE International conference of Bioinformatics and Biomedicine, 9th-11th November, Washington DC (2015)

https://www.osehra.org/sites/default/files/Computer_Exams_V10.pdf

https://cci.drexel.edu/ieeebibm/bibm2015/BIBM2015Program.pdf